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In this paper we consider the problem of expressing a set of displacement 

components satisfying the homogeneous equations of elasticity in terms of 

harmonic functions 1 l-91. 

The following definition of a “general” solution of the homogeneous 

equations of elasticity appears in [ 61: 

Definition 1. A solution of the equations of elasticity in terms of 

harmonic functions is said to be a general solution in a region D if for 

every set of displacement components satisfying the homogeneous equations 

of elasticity, for every closed region D’ contained in the interior of D 

and for every t > 0 there exist functions (tjl*, +2*, #J?* (appearing in the 

given solution) harmonic in D such that the displacement components de- 

termined by &*. st2*+ c$~* satisfy the inequal ities 

in D , 

In othor words, a given solution of the homogeneous equations of 

elasticity is a general solution in a region D, if it contains a sequence 

of functions $_*, ~$~s*, $a* (n = 1, 2, . . . ) harmonic in D such that the 

sequence of corresponding displacement components un*, va*, 10~. converges 

uniformly to the displacements u, v, 111 in D, This definition is of interest 

because such general solutions and well-known expansions of harmonic 
functions can be applied to special problems of the theory of elasticity. 

Such general solutions can also be used to find approximate solutions 

for problems of elasticity (e.g. the variational method of Trefftz) and 

to determine the error of the approximate solutions [ 10-141. 

It may of course happen that, for instance, the sequence c&,,* converges 

666 



General and coaplete solutions of the equations of elasticity 667 

(as n + co)to a function c$, which is not harmonic everywhere in D and 

that +L = lim Flln* may have singularities on certain curves in D. However, 

if the solution is a general one, the displacement components u,,*, vn*, 

IO,,* and their derivatives converge uniformly to the displacements a, v, 
o and their derivatives. 

It is appropriate at this point to introduce in addition the definition 

of a “complete” solution of the homogeneous equations of elasticity*. 

Definition 2, A solution of the homogeneous equations of elasticity is 

called a conplete solution in a region D, if every set of displacement 

components satisfying these equations in D can be expressed in terms of 

functions +,, Is,, $, . . . harmonic everywhere in D which appear in the 

given solution. In other words, a given solution of the homogeneous equa- 

tions of elasticity is a complete solution in D, if the harmonic function: 

+j,*n yi& $Jn* mentioned in the paragraph following Definition 1 con- 

verge uniformly to functions c$,,, c,$, C,I$ harmonic everywhere in D. It is 

clear that a complete solution in a region D is also a general solution 

in the same region. 

However. the converse is not true: a solution may be a general solu- 

tion in D without being a complete solution. The concept of general solu- 

tion is applicable to a wider class of regions than is the concept of 

complete solution. 

We note that the author has proved in 161 that, with certain re- 

strictions on the choice of the origin of coordinates and in some cases 

on Poisson’s ratio, a whole series of solutions of the equations of 

elasticity, containing three harmonic functions, are general solutions 

for simply and doubly connected regions and has derived a general solu- 

tion for multiply connected regions. These results are based on Definition 

1 and an important theorem which states that a function harmonic in a 
simply connected region Dr can be expanded in a uniformly convergent 

series of harmonic polynomials [ 15-191, if certain general restrictions 

are imposed on the surface S1 which bounds D1. 

The above expansion theorem was proved for harmonic functions of two 

variables in the well-known papers of Runge and Walsh; and for harmonic 

functions of three variables, with varying restrictions of a general 

nature on the bounding surface SI of the region D, and on the harmonic 

* In [ 61 the term “general solution” is also used instead of *complete 
solution”. It is clear from the context and the proofs of theorems, 
however, which meaning is to be ascribed to the term “general solution’ 

in [61. 
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function on S1, in the papers of Bergman [ 151 , Szego [ 161 , Keldysh and 

Lavrent’ev [ 171 and Vekua c 181. Vekua [ 181 proved the theorem on the 

assumption that S1 is a Liapunov surface. If a harmonic function is con- 

tinuous in the closed region D1 + S1, it can be approximated uniformly 

by harmonic polynomials in D, + S1. 

In this paper we shall show for which regions some well-known solutions 

(Papkovich [ 21, Grodskii [ 31 , Neuber [ 51, etc. 1 containing three harmonic 

functions are incomplete (they are, however, general solutions in some of 

these regions) and for which regions these solutions are not general 

solutions (and are therefore not complete). 

Our results generalize certain theorems proved in [ l-71. 

1. Nerlber’s solution. Neuber's solution [ 51 which contains three 

harmonic functions, can be obtained from Papkovich-Neuber's solution 

[2-51 

u = B- y-l grad (r l B -I- yo), Y = 4(1- 0) 
(W 

B = irpl + jy2 -I- krg3, r= iz+jv +kz 

(where +1, +2, q!~~ are functions, harmonic in a region II; 

coordinates of points in D; 1, j, k are unit vectors and 
ratio) by eliminating the function #I_,; that is, Neuber's 

u = qIp1- v-Wqax, v = (P2 -v-‘PF/dy 

F==zcp,+ycp,$-cp, w=-v-‘w/az 

x, y, z are the 

c7 is Poisson's 

solution is 

W2) 

The following theorem is proved in [ 61 : 

Theorem I. In order that a set of displacement components ~1, u, w 

satisfying the homogeneous equations of elasticity in a region D be re- 

presentable in the form (1.21, where qSI, c&,, q$ are functions harmonic 

everywhere in D, it is necessary and sufficient that for every harmonic 

function +3 there exist a function I/J? harmonic in D such that 

4J3 - I- 

dz (P3r 
yj2$l3? v2’p3=0 (1*3) 

This theorem clearly gives a necessary and sufficient condition that 

Neuber's solution be complete. For instance, let Q>," be the unbounded 

region exterior to a sphere (see 161, 5) and let D" be the region ex- 

terior to a closed surface S. Then if 

(P3=3J ( cm + cm t “)“(+) 
ay a,m 

m=1,2.... 

(14 
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where r is the distance from the center of the sphere to points of the 

region and cm, c ' are constants, there is no harmonic function 4 

satisfying (1.3Jmin Ck" or D”. It is easily shown in the same way that 

there is no harmonic function I)~ satisfying (1.3) in the doubly connected 

region .C12included between two concentric spheres if +, is again given by 

(1.4). 

Moreover, a much stronger theorem (important from the point of view of 

general solutions) holds for the regions R" and R,. 

Theorem 2. It is possible to construct a function c+$ harmonic in R" 

or 51, such that the inequality 

(1.5) 

holds for sufficiently small c,, in some 

functions \IJ? harmonic in these regions. 

Proof. Let 52, be the region included 

radii r1 and rO. 

subregions of ,CZmor Q2, for all 

between two concentric spheres of 

Let the center 0 of the spheres be the origin of coordinates and let, 

$ = l/r(r’ = x2 + y* + z’), a function harmonic* in n2 as well as in Q”. 

It is clear that for this choice of q53 it is sufficient to prove the 

theorem for I/J_,, a function symmetric relative to the z-axis. 

It is well-known that every function harmonic in R, and symmetric 

relative to the z-axis can be expanded in a uniformly convergent series 
Q) 

$3 = ;r: [a// + bk’-(k+q Pk (cos cl) (1.6) 
k=o 

in the interior of fi, (that is, for r1 < r < rO); where r, 8 are spherical 

coordinates and Pk(cos 8) is a Legendre polynomial. The series (1.6) can 

be differentiated term by term, so that 

ah 
-zzz 
az al + i [(k + 1) CZ,+~ rk - kbk+ r-(k+l)] P, (cos 6) (1.7) 

k=l 

Furthermore, using the orthogonality of spherical functions, we obtain 

6 (r) = SC J-&s dS = \ ) ’ s*(~-f),S.=,,,$[,~-~] (1.8) 

where S’ is the sphere of radius r and center 0. 

- - .- 

* The function (1.4) can be used instead of this function. 
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It is not hard to see that 

(f.9) 

for arbitrary choice of the coefficient a1 of (1.71, Since 

which is assumed for 

It. now follows from (1.8) and (1.9) that the integrand of (1.8) cannot 
be less than ~9 = ~o’/4n ro2 in all of Q,, that is, 

in some subregion of fz*- 
For the unbounded 

(1.8). Then 6(r) = - 

region SZ”it is necessary to put a1 = 0 in (1.5)- 

4n r # 0 for all r, and (1.5) follows. 

The proof of the following theorem is analogous to that of Theorem 1. 

~eore~ 3. In order that Neuber’s solution be a general solution in a 
region D, it is necessary and sufficient that in an arbitrary closed 

region D” of D there exist harmonic functions $* and I$J~* such that 

a+,* 
x = (93.7 ; (P3 - ‘p3* ( < E, grad lq3--93*j <E (1.10) 

where f is arbitrarily small. 

It now follows from Theorem 2 that Neuber’s solution (1.2) is not a 

general solution (and hence is not complete) in either SZmor Q2. 

Hence Neuber’s solution (1.2) is not a general solution in an arbitrary 

unfaded domain D” exterior to a closed surface S, since D” always con- 
tains a subregion @“to which Theorems 2 and 3 can be applied, with 

C$ = l/r, by tak ing the origin of coordinates (r = 0) in the interior 
region bounded by the surface S. 

Similarly, if a doubly connected region D(*) contains a region R,, 

‘Iheorem 2 holds for D(*) as well, with q5? = l/r; consequently (1.2) will 

not be a general solution for such a region. However, Neuber’s solution 
(1.2) is a general solution for an arbitrary simply connected region D, 
bounded by a Liapunov surface S,, that is, (1.10) holds for such a region. 
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We shall now determine the regions D in which Neuber’s solution is com- 

plete and those for which it is not, that is, we shall discuss the cases 

in which a solution of equations (1.3) exists and those in which it does 

not. 

Almansi [ 201 proved that in order that a solution of the equations 

(1.3) may exist in a region T for an arbitrary harmonic function $, it 

is sufficient that the region T be bounded by a surface S, which inter- 

sects lines parallel to the z-axis in only two points. Tolotti [21’1 
proved that this condition is also necessary. 

We shall prove Tolotti’s theorem (‘Iheorem 4) for functions of the 

form (1.4). 

Theorem 4. If a straight line parallel to the z-axis intersects the 

bounding surface S of a three-dimensional region D in more than two 

points, it is possible to construct a function 451 harmonic in D such that 
there is no function +3 harmonic in D which satisfies (1.3). 

Proof. Suppose that a straight line parallel to the z-axis intersects 

the surface S at points AZ, AZ’ Aj, . . . . Choose the origin of coordinates 

at a point 0 in the exterior of the region I1 on the straight line 

A1A20A3..., and let $ be a function of the form (1.4). 

It is clear that the function 

4&l = 2 ( cm + cm’ -5 am 
m=l.z.... 

ay) rrn In (r + 2) + hl (I, Y) 

is harmonic in an arbitrary open bounded region V’.containing no points 

of the negative z-axis and satisfies (1.3) O/J~(X, y) is an arbitrary 

function of two variables harmonic in V’,). Because of the uniqueness of 
the analytic continuation of a harmonic function. we infer that $ cannot 

be continued on all of D and has singularities at the points on the 

negative z-axis. Hence there is no harmonic function r,$ satisfying (1.3) 

everywhere in D, where It is a region of the indicated type and $ Js an 
arbitrary harmonic function of the form (1.4). 

It follows by Theorem 1 that Neuber’s solution (1.2) is not complete, 

if a straight line parallel to the r-axis intersects the surface S in 

more than two points. 

However, there is an essential difference between a doubly connected 

(multiply connected) and a simply connected region of the form indicated 
(a line parallel to the t-axis intersects the surface S in more than two 

points). If the region is simply connected, Neuber’ s solution (1.2) is a 
general solution; if the region is doubly (multiply) connected, (1.2) is 
not a general solution. In neither case is (1.2) complete, 
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2. Papkovich-Neuher's solution. We shall call the solution con- 

taining three harmonic functions obtained from (1.1) by eliminating $, 

that is, 
u = B-vv-rgrad(r*B) (2.1) 

Papkovich-Neuber's solution E2-5 1. 

'Ihe problem of representing a displacement vector u satisfying the 

homogeneous equations of elasticity in a prescribed region D in the form 

(2.11, is reducible to that of determining a function !/I harmonic 

satisfying 

V”tE, =o, Y = 4(1--G) 

where 'pO is an arbitrary function harmonic in D. In other words, 

function I/J satisfying (2.2) in D exists, then the solution (2.1) 
complete in D. 

inD and 

(2.2) 

if a 

is 

Analogously, if there is a function $* harmonic in an arbitrary closed 

region D' of D and satisfying 

in D 
(2.31 

in D' 

where c > 0 is arbitrary, then (1.2) is a general solution in D. 

It is known that there does not exist a harmonic function 3 satisfying 

(2.2) in all of D for an arbitrary region D and an arbitrary harmonic 
function $. h4oreover, the existence of q$ depends on the choice of the 

origin of coordinates 161. 

We shall prove a stronger .theorem (important from the point of view 

of general solutions) which generalizes ertain results of [ 61. 

Theorem 5. Let Q2be the region included between two concentric spheres 

S, andSot with S, the smaller sphere. 'Ihen it is possible to construct a 

harmonic function $ such that 

for sufficiently small to and arbitrary function q!~ harmonic in Sz,, if the 

origin of coordinates-(x = y = z = 0, r = 0) is in the exterior of the 

region D, interior to the sphere S,. 

An analogous theorem can be proved for the region timexterior to S1, 

if the origin of coordinates is in Q?. 
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Theorem 5 and (2.3) imply that if the origin of coordinates is chosen 

as indicated, then (2.1) is not a general solution and hence is not a 

complete solution in 0 *. 

Hence it also follows that (2.1) is not 

bounded triply connected region hounded by 

S, or for the unbounded region R’;) exterior 
S *, if the origin of coordinates is chosen 

a general solution for a 

three disjoint spheres S,, S,, 

to two disjoint spheres Sl and 

arbitrarily. 

Proof. Set #O = p-l, where p is the distance from points of n2to the 

center 0 of the spheres. (the function c#,, is harmonic in a,). 

Denote the radii of S1 and So by p1 and p0 and put p1 = I(p, < p < pO) 

for simplicity. 

Take the origin of coordinates P(r = 0) at a distance z0 from 0 on the 

z-axis in the direction of OP. 

In addition to the coordinates x, y, z introduce coordinates I’* y’, 
t ’ with origin 0 and direct the Y’ -axis in the direction of OP and the 
xc-axis parallel to the x-axis. We have 

x=x’, y = y‘, z=z’-z~ 

r2 =: (PM)2 zz 39 + ya -t_ 23 =.x’s + y’s + (e’ - 2# 

p” -_ (OM)a = I’* + y’s + 2’s 

where ill is an arbitrary point of a,, 

Then (2.2) can be transformed into 

(2.5) 

Because of this choice of X, y, t and x0, y’, E’ and the symmetry of 
the function q& = p-l relative to the z-axis, it is’clearly enough to 
prove (2.4) on the assumptidn that the function I/J of (2.4) is symmetric 
relative to the z- and Z.-axes. 

Furthermore, it is known that every function $ harmonic in “*and 
symmetric with respect to the t-axis can be expanded in the interior of 
hl, into a uniformly convergent series ,l. 61, with t replaced by p. 

Consider the partial sum 1/:, (harmonic in a,) of the series (1.6): 

l A function of the form (1.4) can be substituted for the function 
q!$ = p-l. 



674 M.G. Slobodianskii 

where p, 6 are spherical coordinates and P&(cos 0) is a Legendre POly- 

nomial. 

From (2.5)- (2.6) and (I. 7) we obtain 

M-1 
L I$,,] = 2 {I (v - k) ok+zo(k + 1) ok+rl $+I@ +k + i)kk- aokkk_,l P-(‘+‘)) pk (co* 6) 

k-o 

(2.7) 

aMz = an+l = b,+, = b_, = 0 

We introduce new variables a&* and bk’ 

(v--k)ak’+~oOk+l)ak+l=akJ 

@ + k + 1) bk - db,, = b; 
(k = i, . . .t n) (2.8) 

It is not hard to see that if v = 4(1 - u) is not an integer (which is 
true for u f l/4), the constants a 

3 
and bk are uniquely determined by the 

corresponding variables ak’ and bk . 

From the second system of (2.8) (since b_1 = b,, 1 = 0) we obtain 

W, 1 Pk 

b,, = 
k-o 

ab;==-- ILn v+k+l 

pk = aoal . . . ukt tEn = a0ah . . ., a, (2.W 

aa=v+ 1. 
v+k+i i 

Q,k = k y (k = i,. . ., n) 

Substituting (2; 8) and (2.9) into (2.7) we obtain 

Next, substituting (2.10) into the left side of (2.4) and using the 

orthogonality of Legendre polynomials, we find 

@ = & 
!i 

(L [JI,] - p-r}* dQr = 

& 

=i [a, uk’2 + 2yk ok’ b,’ + pk bk’2] + B, bX - 2 (Yoao’ -I- Bobo’) i- BOI 

k-0 

Here 

(2.il) 

ok = [(2k + 1) (2k f 3)]-1(p$Rt-3 - i), 

bk = [(2k + 1) (2k - I)]-’ (1 - po-‘k+‘), 

yk = I2 (2k + I)]-’ (1;02 - I) 

B* -y (n c l)‘zo2 p,+1 
(2.12) 
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We shall find the minimum value of a, which can be written in the form 
@ = @2 + aI f @9, where @2 is a quadratic form, @I is a linear form in 
the variables ab’, bk’. and @q = & is an independent term. 

From (2.11) and (2.9) we obtain the following system of equations for 
determining the coefficients ak’, bk’ which yield the minimum value of 0: 

fk = g, = o (k=I,...,n) 

fo=Yo=;(p*~-*), go=50=po-i 

Furthermore, it is obvious that 

Hence, because of (2.13) we obtain 

n 

tit min =: PO- 2 (fk ak’ + g,b’,) = Be--- (Yoao’ -I- Bobo’) = ao ho(bo’-i) 

&=0 

a0 YO 
A,,= I I = a& - ‘{OS, sot -1 _??. be’ 

Yo PO a0 

By eliminating unknowns, we find from (2.13) 

b,’ + B, tLk ak.b =O 
I-$ (‘J f k + 1) Ak- n (k = 1, . . ., n) 

bo' + B, PO a’ b, = 1 
11,(v-t1) ?i; 

A, = =ak@k-yka (k=O,l,...,n) 

whence 

b,’ = V+i _- 
v+k-+I 

F. 2 +k (be’ - 1) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

Substituting (2.16) into the second equation of (2.15) and using the 
expression for 6, from (2.9). we find 

1 
B?l 

= 2 (v y2i)% 2 
(2.17) 
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Finally, from (2.14) and (2.17) we obtain 

0 ml* = b + I)-2 II ~~+k~(a)‘(v+k~~)2~kl-1 (2.18) 
n 

We shall investigate the expression (2.18). 

We note first that @,,,o < /3,, = PO - 1, since putting ak’ = bk’ = 0 in 

(2.11) yields b,, = 0 by (2.9), and consequently @mln < &,. 

Hence the expression in square brackets in (2.18) is greater than a 

certain constant. 

Furthermore, by (2.12) 

1 
(v+k+i)iz= 

(2k+ 1) (?k-1) 2k- 1 (p$-- l)a 

3 

-’ 

(v + k + l)a ’ - zJO-~‘+~ - 4 (2k + 3) p,,xk+s _ 1 

(n + I)8 20% 
% = (2n + 1) (2+-_1) (1 - po-2k+1 ) (2.19) 

so that 

forp,> 1 and k+=,n+m. 

From (2.9) we also find 

pk - =zo -k 
fI s 

v-+s+ 1 
(2.20) 

PO 
a=1 

Let zq < 1, i.e. suppose that the origin of coordinates P is in the 

interior of the region D1 bounded by the sphere S1 of radius p1 = 1. Then 

it is obvious from (2.18)- (2.20) that the expression in square brackets 

in (2.18) can be made greater than an arbitrary positive number N by 

choosing a sufficiently large value of n; consequently, for sufficiently 

large a, @m,n will be arbitrarily small. 

In other words, the series in the square brackets in (2.18) diverges 

for z9 < 1 as n + 00 and hence a,,,,” + 0. 

Now, suppose that x9 > 1, i.e. the origin of coordinates P is in the 

exterior of D1; hence P is either in fl,or in the exterior of the region 

Do bounded by the sphere SO of radius PO. 

Then it follows from (2.20) that the ratio Pn/po of (2.18) can be made 
less than an arbitrarily small 6 > 0 for sufficiently large n. 
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which can be made arbitrarily small for (0’ + l)/sO + 1) zOel < 1 and 

sufficiently large n. 

Furthermore, it is not hard to prove, by means of d’ Alembert’ 8 

criterion, that the series in square brackets in (2.18) is 

convergent for n + 00. 

In fact, we have, by (2.20) 

absolutely 

= lim 2_- an+l 3 so-a = zo-a < 1 

II-XO n + 1 A,+, a, 

Consequently, the expression in square brackets in (2.18) is bounded 

from above by a number No independent of n, and so 

CD mln > (v + &No. = Eo 
(2.21) 

which completes the proof. 

Hence (2.4) holds for z. > 1. The inequality (2.4) can be proved in 

the smne way for the region Clw exterior to the sphere S,, if the origin 

of coordinates is in a-. To do so, it is enough to put ak = 0, k = 0, 
1, . . . in (2.6)-(2.20). It follows from Theorem 5 that if two spherical 

three-dimensional regions are removed from bounded or unbounded region, 

(2.4) holds for arbitrary choice of the origin of coordinates and there- 
fore (2.1) is not a general solution for the resulting regions. 

Furthermore, if two three-dimensional regions bounded by closed sur- 

faces S,‘. and S2 ’ (having no points in comn with each other or with 

the bounding surface S, of D ) and lying in the interior of the mentally 

excluded spherical cavities ? three-dimensional regions) bounded by 
spherical surfaces S,, S2 are removed from either a bounded or unbounded 

region D, then (2.4) holds for the resulting regions for arbitrary choice 

of the origin of coordinates; consequently, (2.1) is not a general solu- 
tion for these regions no matter where the origin of coordinates is 

chosen. 

We shall now determine the domains for which Papkovich-Neuber’s 
solution (2.1) is complete, and those for which it is not. 
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E. Trefftz [ 41 considered the system (2.2) for various coefficients v 

and wrote the solution of these equations in the form 

4 = - r” \ r-(“+I) ‘p. dr + Crv 
J 

(2.22) 

where C is a constant of integration depending on the direction of the 

radius r. He noted that if the lower limit of integration in (2.22) is 

taken as F = 0 (the origin of coordinates lies in the interior of the 

region and if C is made equal to 0, then the function 

q, =; _ ,.v [ r-_(v+l) ‘po dr 

0 

(2.23) 

is harmonic and satisfies the equations (2.2) for v < 0 (see also Ekrg- 

man 1151 ). 

Eubanks and Sternberg [7] proved that the function (2.23) is harmonic 

for v > 0 (except for the values v = 3, u = l/4) in a region which is a 

star relative to the origin of coordinates; that is, a region with the 

property that any ray from the origin drawn in the interior of the region 

intersects the bounding surface of the region at precisely one point. 

Since the integral in (2.23) is improper for v > 0 (if the origin is in 

the interior of the region), Eubanks and Sternberg [ 7 1 , in proving their 

theorem, neglected the first few terms of the series expansion of $ 

about the origin in terms of spherical functions. 

We shall prove first that if a ray ON, where 0 is the origin, inter- 

sects the bounding surface SR of a region R in no more than two points, 

then the function (2.22) is harmonic for the corresponding value of the 

constant C. We shall also prove that if the ray ON intersects the sur- 

face SR, in more than two points, there cannot exist a harmonic function 

$ satisfying (2;2) in the region R’ for some choice of the harmonic 

function q5u. It will then follow that (2.1) is a complete solution for R, 

but not for R’. 

Let the origin be exterior to the region R and suppose that the ray 

ON intersects the surface S of R at Al, A2. We consider the function 

J, = - ry \ r-(“+‘)cpO dr + Cr” (2.24) 

h 

where C depends only on the spherical coordinates 8, $. We write the 

Laplace equation in spherical coordinates 

where v 0.4~ is a differential operator depending only on the spherical 
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coordinates 8, #. Furthermore. SinCe 

P 

a*?0 2 ho ’ 
r -(“+l) ‘Podr = -,+-a 1 

_ 
W + r -F)dr= 

r1 PI 

(V + 1) r-” ‘p. - rwvtr. glr -V(V + *)I r-(“~*)podr 

fl r1 

we obtain from (2.24): 

Y7*+ -rv-2{VB,rp2C + V (V + i) C - $01 (2.25) 

80 = rx-’ C (v -I- 1) To + rl% 1 r=r f 
It is clear from (2.26) that a necessary condition for the function $ 

to be harmonic in the region R is that the function C = C(8, 4) satisfy 

v@,~z c + v tv + 1) c == Q. 04 ‘~1 (2.27) 

Vekua[lQ] devised a method for constructing solutions of (2.27) by 

means of complex functions. 

The case when 8 -D ~12 requires additional investigation. 

This case occurs if, for instance, R is a doubly connected finite 
three-dimensional region bounded by two closed surfaces SIR and SzR, 
where SIR is contained in the interior of SzR and the origin 0 is in the 
interior of SIR, and the ray ON intersects each of the surfaces SIR, SZR 
at precisely one point. 

However, the problem of constructing a function $, harmonic in this 
doubly connected domain is easily reduced to two simpler problems. 

Let 

90 -= 901 + (PO%, J, -7 +I+ JI2 

where $Q1, $i are functions harmonic in the region Rlw exterior to the 

surface SIR and h2, $12 are functions harmonic in the region R2 interior 
to the surface. S2~. If there exist functions $I1 I,$ satisfying (2.2), 

*‘Lh %l1* 4502 appearing on the right-hand side of (2.2) for the regions 

J$ , R2’ respectively, then there certainly exists a function (1 satisfy- 
ing (2.2). The existence of the function (J~ follows immediately from the 
fact that the function (2.23). with q50 replaced by $t and (3 by +I, 
satisfies equation (2.21, except for v = 3 ((i = l/4). 

Furthermore, Rutting 
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in analogy with (2.23). it is immediately verified that $2 is a harmonic 
function. This also follows from (2.26). since for r1 = 00, C = 0 and 

v 21ci = 0. 

Hence (2.1) is a complete solution for the region R if the origin is 

chosen as indicated. 

We shall now prove that if the ray ON intersects the surface SRp of 

the region R’ in more than two points, then there cannot exist a harmonic 

function + satisfying (2.2). 

Indeed, suppose the origin 0 (r = 0) is in the interior of the region 

and that the ray ON intersects the surface SR* at points A A 
1’ 2’ Ag, .., . 

Let O1 be a point of the segment A1A2 in the interior of R’. 

Set $6 = - l/p in (2.2), where p is the distance from Oi to an arbi- 

trary point M of the region R’. (I- = OM, p = 0,M). Since the function 

(2.29) 

is harmonic in the interior of the open region V’ obtained hy deleting 

the points of the half-line 01A2A3 . . . from an arbitrary bounded region 

V and furthermore, satisfies the equation 

al)’ 1 
vl)‘-rYg==‘PO=-p (2.30) 

in V’, it is harmonic in the open region R” obtained from R’ by deleting 

the points of the half-line 0iA2A3 . . . . 

Furthermore, since the function (2.29) is (for u f l/4) the only 

harmonic function satisfying (2.2) in a neighborhood of the origin 0. it 

follows from the uniqueness of the analytic continuation of a harmonic 

function that the function $’ defined by (2.29) is the analytic con- 

tinuation of the harmonic function satisfying (2.30) in a neighborhood 

of 0 to all of the region R”.. 

We shall show that 1/1* is arbitrarily large in a neighborhood of the 

line 01A2A7. . . . In fact, putt?ng 

001 = r0, r > r0, v-=4(1-a), o<a<+ (o#f) 

we find 
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4’ (r, 6) = ry 5 r-(“+l) $ dr = ry i r--(“+l) vrs _ 2r:;os e + ro2 > 
0 0 

r 

> r” ,-_(v+1) 
dr 

zzz 
re co9 8)r + (r0 sin Qs 

=+ln[(r-r0cos8) +I/(r-r0cos8)e+(r0sin8)*]~,MB0= 

= + [In (r - ro cos 0 +p) ---In (rosin 8)] (2.31) 

where r, 8 are spherical coordinates. 

It is obvious that the- right side of (2.31) is arbitrarily large as 

e-+ 0. 

It follows that there is no function {J harmonic in all of R’ and 

satisfying (2.30). 

Hence, (2.1) is not a complete solution for R’ if the origin 0 is in 

the interior of R’. 

Now suppose that 0 is outside the region R’ and that a ray ON inter- 

sects the surface SR* at points Ai, AZ, A?, AU, . . . . Choose a point Oi 

on the segment A2A7 outside the region R’ and as above write +O = - l/p, 

where p = OiM, r = OM. 

By adding to the right side of (2.29) an expression of the form Crv, 

where C is a function depending only on the spherical coordinates 8 and 

4. we obtain the general solution of (2.30). Since, the function Cr” must 

be harmonic in the neighborhood of the line A1A2, it will also be harmonic 

in the neighborhood of the line 0iA.,A4. . . . Hence the function $I + Crv 

will be arbitrarily large in the neighboihood of the line 01A7A,,... . 

It follows that there is no harmonic function in R’ satisfying (2.2), 

and so (2.1) is not a complete solution for R’ either in this case or in 

the case when the origin is in R’, as long as the ray ON intersects the 
surface SR* in more than two points. 

However, there is an essential difference between the simply connected 

and multiply connected regions of the form R’. as far as general solutions 

are concerned. If R’ is a simply connected region bounded by a closed 
Liapunov surface S, (2.3) holds, i.e. (2.1) is a general solution; equation 
(2.3) does not hold particularly in the case of multiply connected regions 

(of the form R’) for an arbitrary harmonic function q$, and (2.1) is not 
a general solution. 



682 M.C. Slobodianskii 

3. General and complete solutions for multiply connected 
regions. Suppose that a bounded multiply connected region I) is bounded 
by a closed Liapunov surface So and closed surfaces S,(i = 1, . . . , k), 

the latter lying in the region D, inside S, and having no point’s in 

coanmni with each other or with S,. 

It was shown in [ 6;] that if an arbitrary harmonic vector 5 is re- 

presented in the form 

B = B, + i Bi (3.1) 
i=l 

where 5 is a harmonic vector in D, and Bi a harmonic vector in the 
region i B- exterior to the surface Si, then 

lr 

U = Ug + 2 Ui (3.2) 
i-1 

US = Bi - v-l grad (ri+Bi) (i = i,. . . , k) 

u, = B, - v-l grad (rO - B,), a#+ 

ria = (5 - xi)* + (y - y*)’ + (2 - Zi)” 

(3.3) 

will be a general solution in D. In the formulas (3.21, (3.3f, the point 

0. with coordinates xi, yi, ti 
f&e Si, 

is in the region Di bounded by the sur- 

and x, y, L are the coordinates of an arbitrary point of D. The 

vector U0 can also be written in Neuber’s form (1.2) or in any of the 

other fnns which are general for the region D, ([ 6 1 , 7). 

If the surface S, is absent, then B is an unbounded multiply connected 

region and we must but B. = 0, .ug = 0 in (3.1)-(3.3). 

From the proof of the generality 
[ 61 , it immediately follows that if 

% is a sphere, then (3.1)-(3.3) is 

region. 

of the solution (3.1)-(3.3) given in 

the regions Di are solid spheres and 
also a complete solution for this 

To show this we can take the limit as n + m in the expansions in terms 

of spherical polynomials of the formulas (3-l)-(3.11) and others of [61, 

since the series of spherical polynomials converge uniformly in the 
corresponding regions. 

It follows further that (3.21-13.3) is a complete solution, if each 
solution (3.2) is complete for the corresponding simply connected region 
(the bounded region Do or the unbounded region Di").Ihe last case occurs 
if, for instance, a ray OiN intersects the surface Si at a single point, 
but a ray O,,N in no more than two points (because of the restrictions in 
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Section 2). If the ray 0,N intersects the surface S in more than two 

points and the ray OiN intersects Si in more than one point (and hence 

in more than two points, since Oi zs in D,), then (3.2)-(3.3) is not 

complete for this region, according to Seqtion 2. 

4. Papkovich-Neuber’s solution for (I = l/4. First, it is easy to 

prove that if the origin is in the region and u = l/4, then (2.1) is not 

only incomplete but also not general. 

Suppose, for instance, that R is a solid sphere in D and that the 

origin is the center of the sphere. Writi.ng 

J1= ; PnY,, ‘PO = p3Y3’. b=+V= 4 (1 - 0) = 3 (4-i) 

n=ll 

in (2.2) and (2.4), where Yn is the spherical function of order n, we 

obtain 

= ; \ [(3- n) P”YJ dS1 -t ECJ > Co. co = 
s 

[ p3Ys’]* dS2 (4.2) 
n=cl h a 

It follows from (4.2) that (2.1) is not a general solution for ~7 = l/4 

if the origin is in D. Strangely enough, however, if the origin is out- 

side the sphere 52, then (2.1) is a general and complete solution for fl 

and for arbitrary 0 < ~7 < l/2. This follows immediately from (2.24)-(2.29). 

We consider the interesting special case, $A0 = r? Y7’ = Ag(cos 8), 
where r is the distance from P to a point M of 0 and the positive z-axis 

is directed by PO (0 is the, center of the sphere). In this case, a solu- 

tion of 

30 VJ, - r & = ‘PO =- rYP,, v=3 (2.2) 

where Py is the generalized Legendre function, is immediately found with- 
out having recourse to (2.24)- (2.29). The solution, due to Bromwich [ 221, 

iS 

a 
J, = xv (r”P,) 

For v = 3 this function has the form 

J, = rs In F Ps (~0s 0) - 2r3 {$ PZ (Cm 0) - $ PI (COS 0) + &) (4.3) 

It is easily aqd immediately verified that (4.3) satisfies (2.2) for 
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v = 3 and is harmonic in R (that is. for z > 0). 
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